

Exploration Systems Mission Directorate Overview

NASA Exploration Systems Mission Directorate
June 1, 2006

A Bold Vision for Space Exploration, Authorized by Congress

- Complete the International Space Station
- Safely fly the Space Shuttle until 2010
- Develop and fly the Crew Exploration Vehicle no later than 2014 (goal of 2012)
- Return to the Moon no later than 2020
- Extend human presence across the solar system and beyond
- Implement a sustained and affordable human and robotic program
- Develop supporting innovative technologies, knowledge, and infrastructures
- Promote international and commercial participation in exploration

NASA Authorization Act of 2005

The Administrator shall establish a program to develop a sustained human presence on the Moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations.

NASA's Exploration Roadmap

Command Module

Mold Line: Apollo-Derived Capsule

Crew: 6 for ISS & Mars, 4 for Moon

Size: 16.4 ft (5 Meter) Diameter

Docking Mechanism: APAS or LIDS

Service Module

- Propulsion: Industry Propose Best Solution
- Some Capability for Delivering Unpressurized Cargo

Ongoing Analysis

- Impact of Reducing Volume
- Trading Functionality between Command and Service Module
- Eventual Migration to Non-Toxic Propellants

Crew Launch Vehicle (CLV) Heavy Launch Vehicle (HLLV)

Crew Launch Vehicle

- Single 5 segment RSRB/M 1st stage
- Upper stage powered by a single engine derived from the Saturn J-2

Cargo Launch Vehicle

- Twin 5 segment RSRB/M 1st stage (from CLV)
- Core stage derived from the External Tank
- Powered by 5 RS-68s
- CLV-derived avionics

Earth Departure Stage

- Upper stage derived from the External Tank
- Powered by a single J-2 derived engine 2 burn capability
- CLV-derived main propulsion systems and avionics

The Moon - the 1st Step to Mars and Beyond....

- Regaining and extending operational experience in a hostile planetary environment
- Developing capabilities needed for opening the space frontier

- Preparing for human exploration of Mars
- Science operations and discovery

 Enabling national, commercial and scientific goals for the development and use of the Moon

Next Step in Fulfilling Our Destiny As Explorers

Robotic Lunar Exploration Program (RLEP)

- Provide early information for human missions to the Moon
- Evolvable to later human systems
- Most unknowns are associated with the North and South Poles – a likely destination for a lunar outpost
- Make exploration more capable and sustainable
- Key requirements involve establishment of
 - Terrain and surface properties
 - Knowledge of polar regions
 - Support infrastructure
- Lunar Reconnaissance Orbiter (LRO)
- Provides major scientific and exploration benefit by 2009
- Selected instruments complement other foreign efforts
- LRO launch planned for October 2008; one-year mission
- RLEP 2

Human Research & Technology Development

Human Research Major Areas of Investment:

- Space Radiation Research
- Exploration Medical Capability
- ISS Research Capability
- Physiological Countermeasures
- Behavioral Health
- Human Factors and Environmental Standards

Technology Development:

Mature key technologies to support CEV, CLV, RLEP, and lunar sortie missions

- Structures
- Protection
- Propulsion
- Power
- Thermal Control
- Avionics & Software

- Environmental Control & Life Support
- Crew Support & Accommodations
- Mechanisms
- In-Situ Resource Utilization
- Analysis & Integration
- Operations

Commercial

Centennial Challenges

- Program of contests with cash purses to stimulate innovation and competition in technical areas of interest to space exploration and ongoing NASA priorities
- Four Categories of Challenges / Purses
 - Flagship / Tens of Millions
 - Keystone / \$.5 1 Million
 - Alliance / up to \$250,000
 - Quest / Promote science, technology, engineering, and math (all ages)

Commercial Crew/Cargo Project

- Challenge to U.S. industry to establish capabilities and services to open new space markets
- May eventually support the transportation needs of the ISS
- Phase 1 draft announcement released December 5, 2005
- Proposals due March 3, 2006
- Agreements expected to be awarded this summer

ESMD Areas of Emphasis

Spacecraft

- Guidance
- Navigation and control
- Thermal
- Electrical
- Structures
- Software
- Avionics
- Modeling
- Power systems

- Interoperability/ commonality
- Advanced spacecraft materials
- Crew/vehicle health monitoring
- Life support
- High speed re-entry

Propulsion

- Propulsion methods that will utilize materials found on the moon or Mars
- "Green" propellants
- On-orbit propellant storage
- Motors
- FuelsManufacturing
- Soft landing
- Throttleable propellants
- High performance Descent

Ground Operations

- Pre-launch
- Launch, mission operations
- Command and control software systems
- Communications
- Re-entry
- Landing
- Recovery

System Engineering

Lunar and Planetary Surface Systems

- Precision landing hardware, software, and navigation systems,
- Extended surface operations
- Environmental analysis
- Robotics
- Radiation protection
- Spacesuits
- Life support
- Environmental shielding
- Power systems